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Abstract. We describe several improvements to Freund and Schapidg@ost boosting algorithm, particu-
larly in a setting in which hypotheses may assign confideteesch of their predictions. We give a simplified
analysis of AdaBoost in this setting, and we show how thidyaimcan be used to find improved parameter
settings as well as a refined criterion for training weak hiipees. We give a specific method for assigning
confidences to the predictions of decision trees, a mettuskly related to one used by Quinlan. This method
also suggests a technique for growing decision trees whiets tout to be identical to one proposed by Kearns
and Mansour.

We focus next on how to apply the new boosting algorithms tdiiotass classification problems, particularly
to the multi-label case in which each example may belong trerti@an one class. We give two boosting methods
for this problem, plus a third method based on output codidge of these leads to a new method for handling
the single-label case which is simpler but as effective elsrtigues suggested by Freund and Schapire. Finally,
we give some experimental results comparing a few of theritiigos discussed in this paper.
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1. Introduction

Boosting is a method of finding a highly accurate hypothedaséification rule) by com-

bining many “weak” hypotheses, each of which is only moddyaaccurate. Typically,

each weak hypothesis is a simple rule which can be used taaene predicted clas-
sification for any instance. In this paper, we study boosiingn extended framework in
which each weak hypothesis generates not only predictedifitations, but also self-rated
confidence scores which estimate the reliability of eachsgbiedictions.

There are two essential questions which arise in studyiiggptoblem in the boosting
paradigm. First, how do we modify known boosting algorithaiesigned to handle only
simple predictions to use confidence-rated predictionkémost effective manner possi-
ble? Second, how should we design weak learners whose posdiare confidence-rated
in the manner described above? In this paper, we give answersth of these questions.
The result is a powerful set of boosting methods for handiimage expressive weak hy-
potheses, as well as an advanced methodology for desigreiag lwarners appropriate for
use with boosting algorithms.

We base our work on Freund and Schapire’s (1997) AdaBoostitign which has re-
ceived extensive empirical and theoretical study (Bauer @&#Vi, to appear; Breiman,
1998; Dietterich, to appear; Dietterich & Bakiri, 1995; Rker & Cortes, 1996; Fre-
und & Schapire, 1996; Maclin & Opitz, 1997; Margineantu & Béich, 1997; Quinlan,
1996; Schapire, 1997; Schapire, Freund, Bartlett, & Le®81%$chwenk & Bengio, 1998).



2 R. E. SCHAPIRE AND Y. SINGER

To boost using confidence-rated predictions, we proposeargkzation of AdaBoost in
which the main parameters are tuned using one of a number of methods that we de-
scribe in detail. Intuitively, they;’s control the influence of each of the weak hypotheses.
To determine the proper tuning of these parameters, we tggimesenting a streamlined
version of Freund and Schapire’s analysis which providegeancupper bound on the
training error of AdaBoost when the parametagsare left unspecified. For the purposes
of minimizing training error, this analysis provides an imdiate clarification of the crite-
rion that should be used in settiag. As discussed below, this analysis also provides the
criterion that should be used by the weak learner in fornmdgits weak hypotheses.

Based on this analysis, we give a number of methods for chgosi We show that the
optimal tuning (with respect to our criterion) o can be found numerically in general,
and we give exact methods of settingin special cases.

Freund and Schapire also considered the case in which thadudl predictions of the
weak hypotheses are allowed to carry a confidence. Howeesshaw that their setting of
ay is only an approximation of the optimal tuning which can berfd using our techniques.

We next discuss methods for designing weak learners witfidemce-rated predictions
using the criterion provided by our analysis. For weak hjeses which partition the
instance space into a small number of equivalent predicéigions, such as decision trees,
we present and analyze a simple method for automaticaligrsiag a level of confidence
to the predictions which are made within each region. Thithmeturns out to be closely
related to a heuristic method proposed by Quinlan (1996bémsting decision trees. Our
analysis can be viewed as a partial theoretical justificetio his experimentally successful
method.

Our technique also leads to a modified criterion for selgctinch domain-partitioning
weak hypotheses. In other words, rather than the weak leaimply choosing a weak
hypothesis with low training error as has usually been donthé past, we show that,
theoretically, our methods work best when combined with aknearner which minimizes
an alternative measure of “badness.” For growing decisieest, this measure turns out to
be identical to one earlier proposed by Kearns and Mans@@g)1

Although we primarily focus on minimizing training errorgnalso outline methods that
can be used to analyze generalization error as well.

Next, we show how to extend the methods described aboverfaryclassification prob-
lems to the multiclass case, and, more generally, tothii-labelcase in which each ex-
ample may belong to more than one class. Such problems aiseaily, for instance, in
text categorization problems where the same documentdsaguvs article) may easily be
relevant to more than one topic (such as politics, sports).et

Freund and Schapire (1997) gave two algorithms for boostinfiiclass problems, but
neither was designed to handle the multi-label case. Ingafer, we present two new
extensions of AdaBoost for multi-label problems. In bothes we show how to apply the
results presented in the first half of the paper to these négnsions.

In the first extension, the learned hypothesis is evaluatéatins of its ability to predict a
good approximation of the set of labels associated with aerginstance. As a special case,
we obtain a novel boosting algorithm for multiclass probdeim the more conventional
single-label case. This algorithm is simpler but appayeatl effective as the methods
given by Freund and Schapire. In addition, we propose antyzama modification of
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this method which combines these techniques with Dietieaitd Bakiri's (1995) output-
coding method. (Another method of combining boosting anpuatucoding was proposed
by Schapire (1997). Although superficially similar, his m&d is in fact quite different
from what is presented here.)

In the second extension to multi-label problems, the lehingothesis instead predicts,
for a given instance, a ranking of the labels, and it is eveldildased on its ability to place
the correct labels high in this ranking. Freund and SchapikdaBoost.M2 is a special
case of this method for single-label problems.

Although the primary focus of this paper is on theoreticaliss, we give some exper-
imental results comparing a few of the new algorithms. Weaivbespecially dramatic
improvements in performance when a fairly large amount td éaavailable, such as large
text categorization problems.

2. A Generalized Analysis of Adaboost

LetS = ((z1,11),---, (zm, ym)) be a sequence of training examples where éastance

x; belongs to adomainor instance space’, and eacHabel y; belongs to a finitdabel
space). For now, we focus on binary classification problems in whith {—1,+1}.

We assume access tavaakor basdearning algorithm which accepts as input a sequence
of training examples$ along with a distributionD over{1,...,m}, i.e., over the indices
of S. Given such input, the weak learner computesemk (or basg hypothesish. In
generalh has the formh : X — R. We interpret the sign ok(z) as the predicted label
(—1 or +1) to be assigned to instanee and the magnitudg(z)| as the “confidence” in
this prediction. Thus, ifi(z) is close to or far from zero, it is interpreted as a low or high
confidence prediction. Although the rangehafay generally include all real numbers, we
will sometimes restrict this range.

The idea of boosting is to use the weak learner to form a higbturate prediction rule
by calling the weak learner repeatedly on different disttilns over the training examples.
A slightly generalized version of Freund and Schapire’s Bolast algorithm is shown in
Figure 1. The main effect of AdaBoost's update rule, assgmin > 0, is to decrease
or increase the weight of training examples classified cbliyrer incorrectly byh; (i.e.,
examples for whichy; andh,(z;) agree or disagree in sign).

Our version differs from Freund and Schapire’s in that (1plvéiypotheses can have
range over all ofR rather than the restricted randge1, +1] assumed by Freund and
Schapire; and (2) whereas Freund and Schapire prescritecdisghoice ofy;, we leave
this choice unspecified and discuss various tunings beloggplie these differences, we
continue to refer to the algorithm of Figure 1 as “AdaBoost.”

As discussed below, when the range of ehgls restricted td—1, +1], we can choose
a; appropriately to obtain Freund and Schapire’s original Baast algorithm (ignoring
superficial differences in notation). Here, we give a sirfigdi analysis of the algorithm in
which «; is left unspecified. This analysis yields an improved andarganeral method
for choosingy;.

Let
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Given: (z1,y1),- -, (Tm, Ym) ; x; € X, y; € {-1,+1}

Initialize D1 (i) = 1/m.

Fort=1,...,T:
e Train weak learner using distributiai,.
e Getweak hypothesis; : ¥ — R.
e Choosey; € R.
e Update:
. D (1) exp(—azyihe (x;
Dt+] (Z) _ t( ) p( tYi t( Z))

Zy
whereZ; is a normalization factor (chosen so that, ; will be a distribution).

Output the final hypothesis:

T
H(z) = sign (Z ath,t(at)) .

Figure 1. A generalized version of AdaBoost.

T
fl@) =) anhi(x)

so thatH (z) = sign(f(z)). Also, for any predicater, let [x] be 1 if = holds and0
otherwise. We can prove the following bound on the trainimgreof H.

THEOREM 1 Assuming the notation of Figure 1, the following bound holdshe training
error of H:

% {i: Hzs) 2y} < [[ %

t=1

Proof: By unraveling the update rule, we have that

exp (— ), aqyihi ()
m Ht Zt
exp (—yif(r;))

= mH—Z (1)
L] 14 4t

Moreover, if H (z;) # y; theny; f(z;) < 0implying thatexp(—y; f(z;)) > 1. Thus,

Dria(i) =

[H(x;) # yi] <exp(—yif(xi)). )
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Combining Egs. (1) and (2) gives the stated bound on traieingy since
1 1
- . < = — s .
m EZ :[[H(wz) #yi] < m §Z exp(—yif(xi))

Z (H Zt> D4 (i)

i t
= H 7.
t

[ |

The important consequence of Theorem 1 is that, in order tomize training error,
a reasonable approach might be to greedily minimize the given in the theorem by
minimizing Z; on each round of boosting. We can apply this idea both in tlogcetofa,
and as a general criterion for the choice of weak hypotHgsis

Before proceeding with a discussion of how to apply this gipte, however, we digress
momentarily to give a slightly different view of AdaBoostetH = {¢,...,gn} be the
space of all possible weak hypotheses, which, for simpligie assume for the moment

to be finite. Then AdaBoost attempts to find a linear thresloblthese weak hypotheses
which gives good predictions, i.e., a function of the form

N
H(z) = sign (Z a;9g; (:c)) .

By the same argument used in Theorem 1, it can be seen thauthbem of training
mistakes ofH is at most

m N
Z exp (Uf > “j.‘lj(-??i)) : ©)

AdaBoost can be viewed as a method for minimizing the expess Eq. (3) over the
coefficientsa; by a greedy coordinate-wise search: On each rayralcoordinatej is
chosen corresponding tl, that is, h; = g¢;. Next, the value of the coefficient; is
modified by addingy; to it; all other coefficient are left unchanged. It can be fiedi that
the quantityZ; measures exactly the ratio of the new to the old value of tip@eantial
sum in Eq. (3) so th&f], Z; is the final value of this expression (assuming we start with
all a;’s set to zero).

See Friedman, Hastie and Tibshirani (1998) for further uis@n of the rationale for
minimizing Eq. (3), including a connection to logistic regsion. See also Appendix A for
further comments on how to minimize expressions of this form

3. Choosinga;

To simplify notation, let us fix and letu; = y;hs(z;), Z = Z;, D = Dy, h = hy and
a = a¢. In the following discussion, we assume without loss of gality that D (i) # 0
foralli. Our goalis to findh which minimizes or approximately minimizésas a function
of a. We describe a number of methods for this purpose.
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3.1. Deriving Freund and Schapire’s choicedf

We begin by showing how Freund and Schapire’s (1997) versigkdaBoost can be de-
rived as a special case of our new version. For weak hypastiesgth range[—1, +1],
their choice ofx can be obtained by approximatitgas follows:

Z = Z D(i)e v

00 (1;“iea+ “T“e> | (4)

This upper bound is valid sineg € [-1, +1], and is in fact exact if has rangd —1, +1}
(so thatu; € {—1,+1}). (A proof of the bound follows immediately from the convigxi
of e~ * for any constantr € R.) Next, we can analytically choogseto minimize the right
hand side of Eq. (4) giving

a=3ln (1 i_ :)
wherer = 3. D(i)u;. Plugging into Eq. (4), this choice gives the upper bound
7 <A1-=r2

We have thus proved the following corollary of Theorem 1 whigequivalent to Freund
and Schapire’s (1997) Theorem 6:

IN

COROLLARY 1 ((FREUND & SCHAPIRE, 1997)) Using the notation of Figure 1, assume
eachh; has rangg—1, +1] and that we choose

()
In

1-— Tt
where

ry = Z D (i)yihi(x;) = Eiup, [yihe(x;)] .

N

Xy =

Then the training error of{ is at most
T
H \/1 =12
t=1

Thus, with this setting of, it is reasonable to try to find; that maximizesr;| on each
round of boosting. This quantity is a natural measure of the correlation of the predictions
of h; and the labelg; with respect to the distributio®;. It is closely related to ordinary
error since, ifh; has rangg —1, 41} then
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Priop, [ht(2i) # yi] = ! 5 o
S0 maximizingr; is equivalent to minimizing error. More generally, i has range
[-1,+1] then(1—r;)/2 is equivalent to the definition of error used by Freund andipaie
(e+ in their notation).
The approximation used in Eq. (4) is essentially a lineareudggound of the function
e~ ** ontherange € [—1,+1]. Clearly, other upper bounds which give a tighter approx-
imation could be used instead, such as a quadratic or pisedimiear approximation.

3.2. A numerical method for the general case

We next give a general numerical method for exactly miningz{ with respect toa.
Recall that our goal is to find which minimizes

Z(a) =7 = Z D(i)e %,

The first derivative o7 is
dzZ
== ZD(i)uie*a“i

= 2 Di(i)u;

Z'(a)

by definition of D, 1. Thus, if D, is formed using the value ef; which minimizesZ,
(sothatZ'(a) = 0), then we will have that

ZD”] (i)ui = Einp, .y [yihi(zi)] = 0.
i

In words, this means that, with respect to distribution, ,, the weak hypothesis; will
be exactly uncorrelated with the labels

It can easily be verified that” (o) = d*>Z/da? is strictly positive for alke € R (ignoring
the trivial case that; = 0 for all ;). Therefore Z'(«) can have at most one zero. (See also
Appendix A.)

Moreover, if there exists such thatu; < 0thenZ'(a) — oo asa — oo. Similarly,
Z'(a) » —oo asa — —oc if u; > 0 for somei. This means thaf’(a) has at least one
root, except in the degenerate case that all non-zgsare of the same sign. Furthermore,
because’(«) is strictly increasing, we can numerically find the uniquaimum of Z («)
by a simple binary search, or more sophisticated numeriegthauds.

Summarizing, we have argued the following:

THEOREM2

1. Assume the séy;h:(x;) : i = 1,...,m} includes both positive and negative values.
Then there exists a unique choicengfwhich minimizesZ;.

2. For this choice oy, we have that

Eicp, i [yihe(z:)] = 0.
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3.3.  An analytic method for weak hypotheses that abstain

We next consider a natural special case in which the choieg odn be computed analyt-
ically rather than numerically.

Suppose that the range of each weak hypothesis now restricted td —1,0, +1}. In
other words, a weak hypothesis can make a definitive predittiat the label is-1 or +1,
or it can “abstain” by predicting. No other levels of confidence are allowed. By allowing
the weak hypothesis to effectively say “I don’t know,” weroduce a model analogous to
the “specialist” model of Blum (1997), studied further byeBnd et al. (1997).

For fixedt, let Wy, W_q, W, be defined by

i:u;=b

forb € {-1,0,+1}, where, as beforey; = y;h:(z;), and where we continue to omit
the subscript when clear from context. Also, for readability of notatiome will often
abbreviate subscripts1 and—1 by the symbolst and— so thatiV_; is writtenW,, and
W_y is writtenT/_. We can calculat& as:

Z = ZD(z‘)e*‘W
> ) D@

be{—1,0,41} i:u;=b
— Wo 4+ W_e® + Wye .

It can easily be verified that is minimized when

wW.

For this setting ofx, we have

7 =W+ 2/W_W,. (5)

For this case, Freund and Schapire’s original AdaBoostralgo would instead have
made the more conservative choice

1 <W++%W0>

Oé:§1n 1
W7+§WO

giving a value ofZ which is necessarily inferior to Eq. (5), but which Freundi&thapire
(1997) are able to upper bound by

Z < 2\/(W, + 3 Wo) (W4 + £ Wo). (6)

If Wy = 0 (so thath has rangd —1, +1}), then the choices af and resulting values of
are identical.
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4. A Criterion for Finding Weak Hypotheses

So far, we have only discussed using Theorem 1 to chogsén general, however, this
theorem can be applied more broadly to guide us in the de$igeak learning algorithms
which can be combined more powerfully with boosting.

In the past, it has been assumed that the goal of the weakifgaatgorithm should
be to find a weak hypothests with a small number of errors with respect to the given
distribution D; over training samples. The results above suggest, howteta different
criterion can be used. In particular, we can attempt to ghgeainimize the upper bound
on training error given in Theorem 1 by minimizing on each round. Thus, the weak
learner should attempt to find a weak hypothésig/hich minimizes

Zy = Z Dy (i) exp(—ayyihi(xi)).

This expression can be simplified by foldinginto h;, in other words, by assuming with-
out loss of generality that the weak learner can freely saaleweak hypothesis by any
constant factorr € R. Then (omittingt subscripts), the weak learner’s goal now is to
minimize

Z = ZD(i) exp(—yih(zi)). (7)

For some algorithms, it may be possible to make appropriatgifications to handle such
a “loss” function directly. For instance, gradient-bastgbathms, such as backprop, can
easily be modified to minimize Eq. (7) rather than the morditianal mean squared error.

We show how decision-tree algorithms can be modified baseti@new criterion for
finding good weak hypotheses.

4.1. Domain-partitioning weak hypotheses

We focus now on weak hypotheses which make their predictiassd on a partitioning
of the domainX. To be more specific, each such weak hypothesis is assoaciatied
a partition of X' into disjoint blocks X, ..., Xy which cover all of ¥ and for which
h(z) = h(z') for all z,z" € X;. In other words}’s prediction depends only on which
block X; a given instance falls into. A prime example of such a hypsithis a decision
tree whose leaves define a partition of the domain.

Suppose thaD = D, and that we have already found a partitidn, ..., Xy of the
space. What predictions should be made for each block ofahtéipn? In other words,
how do we find a functiorh : X — R which respects the given partition and which
minimizes Eq. (7)?

Letc; = h(z) for z € X;. Our goal is to find appropriate choices fgr For eachj and
forbe {—1,+1}, let

Wi = Z D(i) = Priwp[z; € Xj Ay; = b]

1T EX]' Ayi=b
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be the weighted fraction of examples which fall in blocwith labelb. Then Eq. (7) can
be rewritten

Z =3 Y. DWexp(-yic)

Z (Wieﬁj + WZe”f) . (8)

J

Using standard calculus, we see that this is minimized when

Wj

Plugging into Eg. (8), this choice gives
Z =23 \wiw’. (10)
j

Note that the sign of; is equal to the (weighted) majority class within blockMoreover,
¢; will be close to zero (a low confidence prediction) if thereaisoughly equal split of
positive and negative examples in blogkLikewise,c; will be far from zero if one label
strongly predominates.

A similar scheme was previously proposed by Quinlan (1966a6signing confidences
to the predictions made at the leaves of a decision tree.oh his scheme differed in
the details, we feel that our new theory provides some pauséfication for his method.

The criterion given by Eq. (10) can also be used as a splittiiigrion in growing a de-
cision tree, rather than the Gini index or an entropic fumetiin other words, the decision
tree could be built by greedily choosing the split which eaithe greatest drop in the value
of the function given in Eq. (10). In fact, exactly this sfifig criterion was proposed by
Kearns and Mansour (1996). Furthermore, if one wants tothmose than one decision
tree then each tree can be built using the splitting critegiven by Eq. (10) while the
predictions at the leaves of the boosted trees are given b{lEq

4.2. Smoothing the predictions

The scheme presented above requires that we predict as (8)&an blockj. It may well
happen thatV’ or W is very small or even zero, in which casgwill be very large or
infinite in magnitude. In practice, such large predictioregmause numerical problems. In
addition, there may be theoretical reasons to suspectitu,loverly confident predictions
will increase the tendency to overfit.

To limit the magnitudes of the predictions, we suggest ugistead the “smoothed”
values

Wj
cj = %ln (WJ;:(g)
-z £
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for some appropriately small positive valuezofBecauséV’ andWi are both bounded
betweerD andl, this has the effect of bounding;| by

1+e¢
%1n< 8 > ~ 31In(1/e).

Moreover, this smoothing only slightly weakens the valug agiince, plugging into Eq. (8)

gives
Wi Wi +e
T/V7 = W’ +e

N
I

< < WJ+5W7+\/W7+5 )
J
< Z(z\/WjWiJr Wi + z—:Wj)
J
< 2) W/ W]+ V2Ne. (11)
J

In the second inequality, we used the inequality + y < /= + ,/y for nonnegativer
andy. In the last inequality, we used the fact that

S W+ w) =

J

which implies

(Recall thatN is the number of blocks in the partition.) Thus, comparings E{.1)
and (10), we see tha will not be greatly degraded by smoothing if we choase«
1/(2N). In our experiments, we have typically usedn the order ofl /m wherem is the
number of training examples.

5. Generalization Error

So far, we have only focused on the training error, even thaug primary objective is to
achieve low generalization error.

Two methods of analyzing the generalization error of Ada@dwave been proposed.
The first, given by Freund and Schapire (1997), uses stand@rtheory to bound the
generalization error of the final hypothesis in terms ofiigsrting error and an additional
term which is a function of the VC-dimension of the final hylpesis class and the number
of training examples. The VC-dimension of the final hypoibetass can be computed
using the methods of Baum and Haussler (1989). Interpgtttie derived upper bound as
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a qualitative prediction of behavior, this analysis suggésat AdaBoost is more likely to
overfit if run for too many rounds.

Schapire et al. (1998) proposed an alternative analysisgiaim AdaBoost's empirically
observed resistance to overfitting. Following the work oftidt (1998), this method is
based on the “margins” achieved by the final hypothesis onrtieing examples. The
margin is a measure of the “confidence” of the prediction.gpafe et al. show that larger
margins imply lower generalization error — regardless eftlumber of rounds. Moreover,
they show that AdaBoost tends to increase the margins ofdirertg examples.

To a large extent, their analysis can be carried over to tleeaticontext, which is the
focus of this section. As a first step in applying their theave assume that each weak
hypothesis; has bounded range. Recall that the final hypothesis hasitime fo

H(x) = sign(f(x))

where

fl@) = arhi().

Since theh;’s are bounded and since we only care about the sigfi, afe can rescale
the h;’s and normalize thev;’s allowing us to assume without loss of generality that each
hy © X — [-1,+1], eacha; € [0,1] and}_, oy = 1. Let us also assume that eakch
belongs to a hypothesis spake

Schapire et al. define thearginof a labeled exampléz, y) to bey f(x). The margin
then is in[—1, +1], and is positive if and only ifH makes a correct prediction on this
example. We further regard the magnitude of the margin asasure of the confidence of
H'’s prediction.

Schapire et al.’s results can be applied directly in thegmesontext only in the special
case that each € H has rangg—1,+1}. This case is not of much interest, however,
since our focus is on weak hypotheses with real-valued ptiedis. To extend the margins
theory, then, let us definé to be thepseudodimensioaf H (for definitions, see, for in-
stance, Haussler (1992)). Then using the method sketcHgelition 2.4 of Schapire et al.
together with Haussler and Long’s (1995) Lemma 13, we caneptioe following upper
bound on generalization error which holds with probability ¢ for all 8 > 0 and for all
f of the form above:

2 1/2
Prs [yf(x) < 6] +0 (ﬁ (B 4 1051/0)) ) .

Here, Prg denotes probability with respect to choosing an exantple) uniformly at
random from the training set. Thus, the first term is the foacof training examples with
margin at most. A proof outline of this bound was communicated to us by PBtatlett
and is provided in Appendix B.

Note that, as mentioned in Section 4.2, this margin-basatysis suggests that it may
be a bad idea to allow weak hypotheses which sometimes makiicpons that are very
large in magnitude. Ifh;(z)| is very large for some;, then rescalingi; leads to a very
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large coefficienty; which, in turn, may overwhelm the other coefficients and sy dra-
matically reduce the margins of some of the training exaspldis, in turn, according to
our theory, can have a detrimental effect on the generaizatror.

It remains to be seen if this theoretical effect will be olselrin practice, or, alternatively,
if an improved theory can be developed.

6. Multiclass, Multi-label Classification Problems

We next show how some of these methods can be extended to ttiease case in which
there may be more than two possible labels or classes. Mereae will consider the
more generaimulti-label case in which a single example may belong to any number of
classes.

Formally, we let) be a finite set of labels or classes, andiet |)|. In the traditional
classification setting, each example X is assigned a single clagss ) (possibly via a
stochastic process) so that labeled examples are (2aig$. The goal then, typically, is to
find a hypothesi#l : X — ) which minimizes the probability that # H(z) on a newly
observed examplez, y).

In the multi-label case, each instancec X may belong to multiple labels . Thus,

a labeled example is a pai#, Y) whereY C ) is the set of labels assignedto The
single-label case is clearly a special case in which= 1 for all observations.

It is unclear in this setting precisely how to formalize theabof a learning algorithm,
and, in general, the “right” formalization may well dependthe problem at hand. One
possibility is to seek a hypothesis which attempts to ptgdat one of the labels assigned
to an example. In other words, the goal is to fild: X — Y which minimizes the
probability thatH (z) ¢ Y on a new observatiofi:, ). We call this measure thene-
error of hypothesisH since it measures the probability of not getting even onehef t
labels correct. We denote the one-error of a hypothiesigth respect to a distributio
over observationge, Y) by one-erp, (H). That s,

one-ery(H) = Pr(, yyp [H(z) ¢ V].

Note that, for single-label classification problems, the-@nror is identical to ordinary er-
ror. In the following sections, we will introduce other las®asures that can be used in the
multi-label setting, namely, Hamming loss and ranking.l&s also discuss modifications
to AdaBoost appropriate to each case.

7. Using Hamming Loss for Multiclass Problems

Suppose now that the goal is to predict all and only all of therect labels. In other
words, the learning algorithm generates a hypothesis whiekicts sets of labels, and
the loss depends on how this predicted set differs from tleetbat was observed. Thus,
H : X — 2Y and, with respect to a distributia, the loss is

1

k E(m,Y)ND [ ‘h(l’) A Y‘ ]
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Given: (z1,Y1),...,(xm, Yy) wherezx; € X,Y; C Y

Initialize D, (i, £) = 1/(mk).

Fort=1,...,T:
e Train weak learner using distributiai,.
o Getweak hypothesis; : X' x YV — R.
e Choosey; € R.
e Update:
Dy (i, - Y; i
Dy (i 0) = (2, 0) exp(—a Y [€lhe (i, L))

Zy
whereZ; is a normalization factor (chosen so that, ; will be a distribution).
Output the final hypothesis:

T
H(z,t) = sign (Z atht(m,ﬂ)> .

t=1

Figure 2. AdaBoost.MH: A multiclass, multi-label version of AdaBadmsed on Hamming loss.

whereA denotes symmetric difference. (The leadin@ is meant merely to ensure a value
in [0, 1].) We call this measure thdamming los®f H, and we denote it by hlogg H ).

To minimize Hamming loss, we can, in a natural way, decomplosgroblem intok
orthogonal binary classification problems. That is, we daink of Y as specifyingk
binary labels (depending on whether a lapés or is not included irt”). Similarly, h(z)
can be viewed ag binary predictions. The Hamming loss then can be regardeahas
average of the error rate éfon thesek binary problems.

ForY C Y, let us defin@’[/] for £ € ) to be

Cf+lifrey
Ha{lﬁﬂgf

To simplify notation, we also identify any functiod : X — 2% with a corresponding
two-argument functiod : X x Y — {—1,+1} defined byH (z, ¢) = H(x)[{].

With the above reduction to binary classification in mindisitrather straightforward
to see how to use boosting to minimize Hamming loss. The nua df the reduction
is simply to replace each training example, Y;) by k& exampled(x;, £), Y;[¢]) for £ €
Y. The result is a boosting algorithm called AdaBoost.MH {ghdn Figure 2) which
maintains a distribution over exampleand labeld. On roundt, the weak learner accepts
such a distributiorD, (as well as the training set), and generates a weak hypethesi
X xY — R. Thisreduction also leads to the choice of final hypothdsisw in the figure.

The reduction used to derive this algorithm combined witledilem 1 immediately im-
plies a bound on the Hamming loss of the final hypothesis:
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THEOREM 3 Assuming the notation of Figure 2, the following bound hdtdghe Ham-
ming loss of on the training data:

T
hlosgH) < [] %

t=1

We now can apply the ideas in the preceding sections to thepiclassification prob-
lem. As before, our goal is to minimize

Zy =Y Dy(i, €) exp(—o Yi[l] by (s, €)) (12)
il

on each round. (Here, it is understood that the sum is ovexalnples indexed biyyand
all labels? € ).)
As in Section 3.1, if we require that eathhave rangd —1, +1} then we should choose

1+
at:%1n<1_:2> (13)
where
re =Y Dy(i, ) Yi[l] hy(z;, 0). (14)
[N
This gives

Zt:\/l—’l“g

and the goal of the weak learner becomes maximization, of
Note that(1 — r;)/2 is equal to

Pr(; .o~ [hi(mi, €) # Yi[l]]
which can be thought of as a weighted Hamming loss with respdg;.

Example As an example of how to maximize,|, suppose our goal is to find ablivious
weak hypothesig; which ignores the instance and predicts only on the basis of the
label¢. Thus we can omit the argument and writé,(z,¢) = h.(¢). Let us also omit
subscripts. By symmetry, maximizingr is equivalent to maximizing. So, we only need
to find h which maximizes

S DG, 0 Yile) he)
il

r

> [h(é) Zp(i,zm[e] .

4
Clearly, this is maximized by setting

h(f) = sign (Z D(i, 0) 1@[@]) .
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7.1. Domain-partitioning weak hypotheses

We also can combine these ideas with those in Section 4.1 waidepartitioning weak
hypotheses. As in Section 4.1, suppose thit associated with a partitioN,, ..., Xn

of the spacet. It is natural then to create partitions of the fofthx ) consisting of all
setsX; x {{}forj =1,...,N and¢ € Y. An appropriate hypothesis can then be
formed which predict&(z, £) = ¢;, for z € X;. According to the results of Section 4.1,
we should choose

Wﬂ
cje = %ln <W—}> (15)
WhereWbﬂ =, D@, 0)[z; € X; ANY;[] = b]. This gives

z=23 5"\ wi'wi. (16)
i

7.2. Relation to one-error and single-label classification

We can use these algorithms even when the goal is to minimigeoror. The most natural
way to do this is to set

Hl(z) = he(z, 17
() argmgxzt:at i(z,y), (17)
i.e., to predict the labe] most predicted by the weak hypotheses. The next simplegheor
relates the one-error di' and the Hamming loss df .

THEOREM4 With respect to any distributio over observationgz, Y') whereY” # {,

one-erp(H') < khloss, (H).

Proof: AssumeY # () and supposél ' (z) ¢ Y. We argue that this implieB (z) # V. If
the maximum in Eq. (17) is positive, théf! (z) € H(x) — Y. Otherwise, if the maximum
is nonpositive, therH (z) = ) # Y. In either caseH (z) # Y, i.e.,|H(z) AY| > 1.
Thus,

[H'(z) ¢ Y] < |H(z) AY|

which, taking expectations, implies the theorenm

In particular, this means that AdaBoost.MH can be appliedingle-label multiclass
classification problems. The resulting bound on the trgrérror of the final hypothesis
H!is at most

k] 2 (18)
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whereZ, is as in Eq. (12). In fact, the results of Section 8 will implpeiter bound of
k
‘2 (19
t

Moreover, the leading constahf2 can be improved somewhat by assuming without loss
of generality that, prior to examining any of the data)th weak hypothesis is chosen,
namelyhy = —1. For this weak hypothesis, = (k — 2)/k and Z, is minimized by
settingay = éln(k — 1) which givesZ, = 2v/k — 1/k. Plugging into the bound of
Eqg. (19), we therefore get an improved bound of

This hack is equivalent to modifying the algorithm of Fig@renly in the manner in which
D, is initialized. Specifically,D; should be chosen so thax (i,y;) = 1/(2m) (where
y; is the correct label for;) and D, (i, £) = 1/(2m(k—1)) for £ # y;. Note thatH' is
unaffected.

8. Using Output Coding for Multiclass Problems

The method above maps a single-label problem into a mudgtiproblem in the simplest
and most obvious way, namely, by mapping each single-ldis#wation(x, y) to a multi-
label observatiofiz, {y}). However, it may be more effective to use a more sophisticate
mapping. In general, we can define a one-to-one mappinyi — 2% which we can use
to map each observatidm, y) to (x, A(y)). Note that\ maps to subsets of an unspecified
label sety’ which need not be the sameXsLetk’ =|)'|.

It is desirable to chooskto be a function which maps different labels to sets which are
far from one another, say, in terms of their symmetric défeze. This is essentially the
approach advocated by Dietterich and Bakiri (1995) in a sena¢ different setting.They
suggested using error correcting codes which are designbdve exactly this property.
Alternatively, whenk' is not too small, we can expect to get a similar effect by chmaps
entirely at random (so that, far € Y and/ € ), we include or do not includéin A(y)
with equal probability). Once a functiok has been chosen we can apply AdaBoost.MH
directly on the transformed training data;, A(y;)).

How then do we classify a new instanc® The most direct use of Dietterich and Bakiri's
approach is to evaluaté onx to obtain a setf (z) C )'. We then choose the labgle Y
for which the mapped output codéy) has the shortest Hamming distancef¢z). That
is, we choose

argmin [A\(y) A H(z)|.
yey
A weakness of this approach is that it ignores the confidenitewhich each label was
included or not included ii7 (). An alternative approach is to predict that lapethich,
if it had been paired with: in the training set, would have causgéd y) to be given the
smallest weight under the final distribution. In other wonde suggest predicting the label
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Given:(z1,y1), .- -, (Tm,ym) Wherez; € X, y; € Y
a mapping : Y — 2V’

Run AdaBoost.MH on relabeled dat@:;, A(y1)), - - -, (£m, AMym))
Get back final hypothesiH of form H(z,y') = sign(f(z,y"))
wheref (z,') Zaf

e Output modified flnal hypothesis:
(Variant1) H,(z) = arg min [A(y) A H(z)|

(Variant2) Hs(z) = argmeln Z exp (—A(y)[y'] f(z,9"))
y' ey’

Figure 3. AdaBoost.MO: A multiclass version of AdaBoost based on ougodes.

argmin 3~ exp(-A)ly] f(z.")

y ey’

where, as beforef(z,y') = >, arhe(z,y').

We call this version of boosting using output codes AdaBddGt Pseudocode is given
in Figure 3. The next theorem formalizes the intuitions ahaiving a bound on training
error in terms of the quality of the code as measured by thémmim distance between
any pair of “code words.”

THEOREM5 Assuming the notation of Figure 3 and Figure 2 (viewed as aaitme), let
= i A1) AX(L)).
p=, min  IMG)ANE)

When run with this choice of, the training error of AdaBoost.MO is upper bounded by

for Variant 1, and by

kT
11z

for Variant 2.

Proof: We start with Variant 1. Suppose the modified output hypash®s for Variant 1
makes a mistake on some examfiey). This means that for sonfe#£ y,

|H (x) AXO)| < [H(x) AXy)|
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which implies that
2[H(z) AXy)| = [H(z) A

[(H () AX(

[Aly) A

p

)|+ [H(z) AX)|
y)) A (H(z)AA(0)]
)|

v 1V

Y

where the second inequality uses the fact {Hat B| < |A| + | B| for any sets4 andB.
Thus, in case of an errof (z) A A(y)| > p/2. On the other hand, the Hamming error of
AdaBoost.MH on the training set is, by definition,

mk,Zm ) A X(y:)|

whichis at mos{ ], Z; by Theorem 3. Thus, i/ is the number of training mistakes, then

Ms

M

NSNS

<D H () Ayl < mk' [] 2

i=1

which implies the stated bound.
For Variant 2, suppose th#, makes an error on some exampley). Then for some

t#y
> exp (MO f,9) < D exp (AW f(2,y)) - (20)

y' ey y' €Y’

Fixing z, y and/, let us definav(y') = exp (—A(y)[y’] f(z,y')). Note that

exp (X (a1 = { VW) HAOI = X!

1/w(y") otherwise.
Thus, Eq. (20) implies that
Z w(y') > Z 1/w(y")
y' €S y'eS
whereS = A(y)AX(¥). This implies that
doow) > Y w25 )y (wly)+1/wy) 218> p.
y' ey y'eS y'es

The third inequality uses the fact that+ 1/z > 2 for all z > 0. Thus, we have shown
that if a mistake occurs ofx, i) then

3" exp (AW f(z.y)) > p.

y' ey

If M is the number of training errors under Variant 2, this meias t
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pM < Z > exp (< Awi)ly'] f(i,y') = mk' [[ Z

i=1y' ey’ t

where the equality uses the main argument of the proof of ldred. combined with the
reduction to binary classification described just prior teedrem 3. This immediately
implies the stated bound.m

If the code) is chosen at random (uniformly among all possible codegh tfor large
k', we expecp to approach(1/2 — o(1))k'. In this case, the leading coefficients in the
bounds of Theorem 5 approach 4 for Variant 1 and 2 for Varigrin@ependent of the
number of classek in the original label se).

We can use Theorem 5 to improve the bound in Eq. (18) for AdaBbfid to that in
Eqg. (19). We apply Theorem 5 to the code defined\by) = {y} forall y € Y. Clearly,
p = 2 in this case. Moreover, we claim that! as defined in Eq. (17) produces identical
predictions to those generated by Variant 2 in AdaBoost. M©es

D exp (=AW fa,y) = e T — el ) 4 N7 el ), (21)

y'ey y' ey

Clearly, the minimum of Eq. (21) overis attained wherf (z, y) is maximized. Applying
Theorem 5 now gives the bound in Eq. (19).

9. Using Ranking Loss for Multiclass Problems

In Section 7, we looked at the problem of finding a hypothdsis exactly identifies the
labels associated with an instance. In this section, weidena different variation of this
problem in which the goal is to find a hypothesis whiahksthe labels with the hope that
the correct labels will receive the highest ranks. The apgihadescribed here is closely
related to one used by Freund et al. (1998) for using boostinghore general ranking
problems.

To be formal, we now seek a hypothesis of the fgfmX x ) — R with the interpre-
tation that, for a given instance the labels iny should be ordered according 14z, -).
That is, a label; is considered to be ranked higher thanf f(z,¢,) > f(x,{2). With
respect to an observatiqe,Y'), we only care about the relative ordering of ttreicial
pairs £y, £; for which/y ¢ Y and/; € Y. We say thatf misordersa crucial pairy, ¢; if
flx, ly) < f(z,£y) so thatf fails to ranké;, abovely. Our goal is to find a functiogf with
a small number of misorderings so that the label¥"iare ranked above the labels not in
Y.

Our goal then is to minimize the expected fraction of crupiits which are misordered.
This quantity is called theanking loss and, with respect to a distributidn over observa-
tions, it is defined to be

B {lo, lr) e Y =Y) XY : f(z,l1) < f(z,bo)}|
oy Yy -] |

We denote this measure rlgssf). Note that we assume thgtis never empty nor equal
to all of ) for any observation since there is no ranking problem to Iheesian this case.
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Given: (z1,Y1),...,(xm, Yy) wherezx; € X,Y; C Y

Initialize D (i, o, 6;) = { é/(m Vil 1Y = Yi|) if 6 € Y; andly € Y;

else.
Fort=1,...,T:
e Train weak learner using distributiai,.
o Getweak hypothesis; : X' x YV — R.
e Choosey; € R.
e Update:

Dy (i, Lo, €) exp (3o (hy(zi, bo) — by (4, ¢1)))
Zy

Dy (i, by, 1) =

whereZ; is a normalization factor (chosen so thiat,; will be a distribution).

Output the final hypothesis:

T
Fla, ) =" athy(z,0).

Figure 4. AdaBoost.MR: A multiclass, multi-label version of AdaBodmised on ranking loss.

A version of AdaBoost for ranking loss called AdaBoost.MRsliewn in Figure 4. We
now maintain a distributio®, over{1, ..., m}xY xY. This distribution is zero, however,
except on the relevant triplés, £, ¢1) for which ¢, ¢, is a crucial pair relative t¢z;, Y;).

Weak hypotheses have the fofm : X' x  — R. We think of these as providing a
ranking of labels as described above. The update rule isrgehit Let/,, ¢, be a crucial
pair relative to(z;, Y;) (recall thatD; is zero in all other cases). Assuming momentar-
ily that a; > 0, this rule decreases the weight (i, ¢o, ¢1) if h; gives a correct ranking
(he(zs, 61) > he(z4,£o)), and increases this weight otherwise.

We can prove a theorem analogous to Theorem 1 for ranking loss

THEOREM6 Assuming the notation of Figure 4, the following bound hétads$he ranking
loss off on the training data:

T

rloss(f) < ] 2.

t=1

Proof: The proofis very similar to that of Theorem 1.
Unraveling the update rule, we have that

Dy (i, bo, 1) exp (5(f (i, bo) — f(zi,01))) _

DT+](Z.7€0:£1) = H 7
t “t
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The ranking loss on the training set is

Z Dy (i, b, €1)[ f (i, bo) > f(xi,01)]

i,40,01
< Z Dy (i, by, t1) exp (5 (f(zi,lo) — f(xi, 1))
i,40,01
= > Dralibo.t)[[2=]] 2.
iborts ¢ ¢

(Here, each of the sums is over all example indicassd all pairs of labels iy x V.) This
completes the theorem.m
So, as before, our goal on each round is to try to minimize

Z =Y D(i,lo,br)exp (§o(h(zi, bo) — h(zi, (1))

i,€0,01

where, as usual, we omitsubscripts. We can apply all of the methods described in pre-
vious sections. Starting with the exact methods for findinguppose we are given a hy-
pothesish. Then we can make the appropriate modifications to the meih8ection 3.2
to find o numerically.

Alternatively, in the special case thiahas rangq —1, +1}, we have that

%(h(rl,ﬁﬂ) — h(Thﬁl)) S {*1,0/4-1} .

Therefore, we can use the method of Section 3.3 to chaasectly:

a=1ln (%) (22)
where
Wy = Y D(i,lo, 01)[h(xi, bo) — h(w;, £1) = 20]. (23)
i,[o,[]
As before,
Z=Wy+2/W_W, (24)
in this case.

How can we find a weak hypothesis to minimize this expressfoainplest first case is
to try to find the best oblivious weak hypothesis. An intaresbpen problem then is, given
a distributionD, to find an oblivious hypothesis : J — {—1,+1} which minimizesZ
when defined as in Egs. (23) and (24). We suspect that thidgmmomay be NP-complete
when the size oy is not fixed.

We also do not know how to analytically find the best oblividnypothesis when we
do not restrict the range df, although numerical methods may be reasonable. Note that
finding the best oblivious hypothesis is the simplest casta®fatural extension of the
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technique of Section 4.1 to ranking loss. FoldinfR into h as in Section 4, the problem
isto findh : Y — R to minimize

7=3 KZ D(z'.,eo,e])> exp(h(lo) - hw]))l :

Lo, 01

This can be rewritten as

Z =" [w(to,tr)exp(h(ty) — h(f1))] (25)

Lo,l1

wherew(ly, £1) = >, D(i, 4o, (1). In Appendix A we show that expressions of the form
given by Eq. (25) are convex, and we discuss how to minimizh sxpressions. (To see
that the expression in Eq. (25) has the general form of EdL)(Adentify thew({y, ¢1)'s
with thew;’s in Eq. (A.1), and théi(¢)'s with thea;’s.)

Since exact analytic solutions seem hard to come by for rankiss, we next consider
approximations such as those in Section 3.1. Assuming wep&theses with range in
[—1,+1], we can use the same approximation of Eq. (4) which yields

Z<<12r>e(’+<l—;r>e(y (26)
where
r=3% Y D(ilo, () (h(zi, ) = h(z;, bo)). (27)

i,€0,01

As before, the right hand side of Eq. (26) is minimized when

1+7r
a—%ln(lr> (28)

which gives

Z <\1-r2

Thus, a reasonable and more tractable goal for the weakdesrto try to maximizer|.

Example To find the oblivious weak hypothedis: ) — {—1, +1} which maximizes-,
note that by rearranging sums,

r=>_ h(f)x(t)
l

where

m(6) = § Y (D(i,l',0) = D(i,,0)).

i

Clearly,r is maximized if we seb(¢) = sign(n(¢)).

Note that, although we use this approximation to find the waadothesis, once the weak
hypothesis has been computed by the weak learner, we carthgemethods to choose
such as those outlined above.
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Given: (z1,Y1),...,(xm, Yy) wherezx; € X,Y; C Y

Initialize vy (i,€) = (m - |Y;| - |V — V;]) /2

Fort=1,...,T:
e Train weak learner using distributiad; (as defined by Eq. (29))
e Getweak hypothesis; : X x YV — R.
e Choosey; € R.
e Update:
) v (i, £) exp (—%atYi[é]ht(:ci,é))
é =
Vt+1 (Z7 ) \/Z
where
Zy = Z [ Z ve(i, £) exp (Sarhy(2, () (Z v (i, £) exp (%O/fhf('r1ﬁ))>-|
i [ 12Y; LEY; J

Output the final hypothesis:

fla, ) = aghy(x,0).

Figure 5. A more efficient version of AdaBoost.MR (Figure 4).

9.1. A more efficientimplementation

The method described above may be time and space inefficient there are many labels.
In particular, we naively need to maintdirj;| - |V — Y;| weights for each training example
(z4,Y3), and each weight must be updated on each round. Thus, the spaplexity and
time-per-round complexity can be as badlas:k?).

In fact, the same algorithm can be implemented using 6ry.k) space and time per
round. By the nature of the updates, we will show that we orldhito maintain weights

over{l,...,m} x ). We will maintain the condition that ify, ¢, is a crucial pair relative
to (x;,Y;), then
Dt(i,ﬂg,fl) :7)15(72720) "l)t(i;ﬂl) (29)

at all times. (Recall thab, is zero for all other triplesi, ¢o, £1).)

The pseudocode for this implementation is shown in Figuied.(29) can be proved by
induction. It clearly holds initially. Using our inductivgypothesis, it is straightforward to
expand the computation &f; in Figure 5 to see that it is equivalent to the computation of
Zy in Figure 4. To show that Eqg. (29) holds on round 1, we have, for crucial paify, ¢1:

Dt(ivzo:ﬂl) €xXp (%(}f(h,f(z‘“/[)) - h‘f(’”?,ﬁl)))
Zy

D1 (i, lo, b1) =
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v (i, bo) exp (garhe (2, Lo)) _ ve(i, £1) exp (—3aghy (x4, 61))
VZy VZ;

= ’Uf,+1(72,£0) . ’l)f,+1(7:,£1) .

Finally, note that all space requirements and all per-rocmghputations ar€(mk),
with the possible exception of the call to the weak learn@wkler, if we want the weak
learner to maximizér| as in Eq. (27), then we also only need to pagsweights to the
weak learner, all of which can be computedl(mk) time. Omittingt subscripts, we can
rewriter as

ro= 3> D(i,lo, (1) (h(zi, 1) — h(zi, b))
i,00,01

=313 Y wlibo)(i, &) (A(xi, 6)Yi[l] + h(zi, €)Yi[o])

i Lo@Yi l1€Y;

=3 {Z <U(i750) > v(i:£1)> Yillo] h(wi, bo) +

i | Lo@Yi b €Y

> (v(i,m > u(z’,eo)) Yi[mh(whé])}

(L EY; Lo Y
= > d(i, ) Vi[(] h(z;, 0) (30)
il
where
(i, 0) = (i, 0) > w(il).
Y [0)£Yi (]

All of the weightsd(i, £) can be computed i®(mk) time by first computing the sums
which appear in this equation for the two possible cases¥Hétis —1 or +1. Thus,

we only need to pas®(mk) weights to the weak learner in this case rather than the full
distribution D; of size O(mk?). Moreover, note that Eq. (30) has exactly the same form
as Eqg. (14) which means that, in this setting, the same weaikde can be used for either
Hamming loss or ranking loss.

9.2. Relation to one-error

As in Section 7.2, we can use the ranking loss method for nizirg one-error, and there-
fore also for single-label problems. Indeed, Freund andafith’s (1997) “pseudoloss’-
based algorithm AdaBoost.M2 is a special case of the usen&firg loss in which all data
are single-labeled, the weak learner attempts to maximjzas in Eq. (27), and is set
asin Eq. (28).

As before, the natural prediction rule is

H'(z) = argmax  _ f(z,y),
i t
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in other words, to choose the highest ranked label for irgan\We can show:

THEOREM 7 With respect to any distributioP over observationéz, ') whereY” is nei-
ther empty nor equal ty’,

one-erp(H") < (k — 1) rlossy (f).

Proof: Supposéf!(x) ¢ Y. Then, with respect t¢ and observatiofw, V'), misorderings
occur for all pairst; € Y andfy = H'(z). Thus,

{(lo, 1) € (VY =Y) x Y : f(x, 1) < f(x,00)}] > 1 5 1
Y-y -Y]| S Y-Y] T k-1

Taking expectations gives

1

mE(z,Y)ND [[H'(z) ¢ Y]] < rlossp(f)

which proves the theorem.m

10. Experiments

In this section, we describe a few experiments that we raroomesof the boosting algo-
rithms described in this paper. The first set of experimeatsgares the algorithms on a
set of learning benchmark problems from the UCI repositbhe second experiment does
a comparison on a large text categorization task. More ldethiour text-categorization
experiments appear in a companion paper (Schapire & Sitigappear).

For multiclass problems, we compared three of the boostoyighms:

Discrete AdaBoost.MH: In this version of AdaBoost.MH, we require that weak hypethe
ses have rangg-1, +1}. As described in Section 7, we sgtas in Eq. (13). The goal
of the weak learner in this case is to maximjzg as defined in Eq. (14).

Real AdaBoost.MH: In this version of AdaBoost.MH, we do not restrict the rande o
the weak hypotheses. Since all our experiments involve dopartitioning weak
hypotheses, we can set the confidence-ratings as in Secfigithéreby eliminating
the need to choose,;). The goal of the weak learner in this case is to minimize
as defined in Eq. (16). We also smoothed the predictions agdén £2 usings =
1/(2mk).

Discrete AdaBoost.MR: In this version of AdaBoost.MR, we require that weak hypethe
ses have rangé—1, +1}. We use the approximation df; given in Eq. (26) and
therefore sety; as in Eq. (28) with a corresponding goal for the weak learfienaxi-
mizing |r;| as defined in Eq. (27). Note that, in the single-label case allgorithm is
identical to Freund and Schapire’s (1997) AdaBoost.M?2 rdtigin.
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We used these algorithms for two-class and multiclass problalike. Note, however,
that discrete AdaBoost.MR and discrete AdaBoost.MH arévatgnt algorithms for two-
class problems.

We compared the three algorithms on a collection of benckprablems available from
the repository at University of California at Irvine (Merz Biurphy, 1998). We used
the same experimental set-up as Freund and Schapire (18@@)ely, if a test set was
already provided, experiments were run 20 times and thdtsesveraged (since some of
the learning algorithms may be randomized). If no test sstpravided, then 10-fold cross
validation was used and rerun 10 times for a total of 100 rdiesioh algorithm. We tested
on the same set of benchmarks, except that we dropped thesf¥/dataset. Each version
of AdaBoost was run for 1000 rounds.

We used the simplest of the weak learners tested by Freun&eimapire (1996). This
weak learner finds a weak hypothesis which makes its preditthsed on the result of a
single test comparing one of the attributes to one of its iptesssalues. For discrete at-
tributes, equality is tested; for continuous attributethrashold value is compared. Such
a hypothesis can be viewed as a one-level decision tree {gnesecalled a “decision
stump”). The best hypothesis of this form which optimizes éppropriate learning crite-
rion (as listed above) can always be found by a direct andefisearch using the methods
described in this paper.

Figure 6 compares the relative performance of Freund andsets AdaBoost.M2 al-
gorithm (here called “discrete AdaBoost.MR”) to the newaaithm, discrete AdaBoost.MH.
Each point in each scatterplot gives the (averaged) ertes & the two methods for a sin-
gle benchmark problem; that is, threcoordinate of a point gives the error rate for discrete
AdaBoost.MR, and thg-coordinate gives the error rate for discrete AdaBoost.(Bice
the two methods are equivalent for two-class problems, vixe give results for the multi-
class benchmarks.) We have provided scatterplots for 1@ah@l 1000 rounds of boosting,
and for test and train error rates. It seems rather clear frmse figures that the two meth-
ods are generally quite evenly matched with a possibletstighiantage to AdaBoost.MH.
Thus, for these problems, the Hamming loss methodologysgieenparable results to Fre-
und and Schapire’s method, but has the advantage of beirgptrally simpler.

Next, we assess the value of using weak hypotheses whichcgiviedence-rated pre-
dictions. Figure 7 shows similar scatterplots compariraj AedaBoost.MH and discrete
AdaBoost.MH. These scatterplots show that the real versidth confidences) is overall
more effective at driving down the training error, and alss lan advantage on the test
error rate, especially for a relatively small number of rdan By 1000 rounds, however,
these differences largely disappear.

In Figures 8 and 9, we give more details on the behavior of iffierdnt versions of Ada-
Boost. In Figure 8, we compare discrete and real AdaBoostdvitts different problems
from the UCI repository. For each problem we plot for eachhmodtits training and test
error as a function of the number of rounds of boosting. Sinyl in Figure 8 we com-
pare discrete AdaBoost.MR, discrete AdaBoost.MH, andAdaBoost.MH on multiclass
problems.

After examining the behavior of the various error curves, plotential for improvement
of AdaBoost with real-valued predictions seems to be getaie larger problems. The
most noticeable case is the “letter-recognition” task,ltngest UCI problem in our suite.
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Figure 10.Comparison of the training (left) and test (right) erromgsthree boosting methods on a six-class text
classification problem from the TREC-AP collection.

This is a 26-class problem withs, 000 training examples ard] 000 test examples. For this
problem, the training error aftef00 rounds is32.2% for discrete AdaBoost.MR28.0%
for discrete AdaBoost.MH, ant9.5% for real AdaBoost.MH. The test error rates after
100 rounds are 34.1%, 30.4% and 22.3%, respectively. By 1,000ds, this gap in test
error has narrowed somewhat to 19.7%, 17.6% and 16.4%.

Finally, we give results for a large text-categorizatiomlggem. More details of our
text-categorization experiments are described in a coiopgraper (Schapire & Singer,
to appear). In this problem, there are six classeSMBSTIC, ENTERTAINMENT, FINAN -
CIAL, INTERNATIONAL, POLITICAL, WASHINGTON. The goal is to assign a document to
one, and only one, of the above classes. We use the same \aeadrlas above, appropri-
ately modified for text; specifically, the weak hypothese&entheir predictions based on
tests that check for the presence or absence of a phrase suaédat. There are 142,727
training documents and 66,973 test documents.

In Figure 10, we compare the performance of discrete AdaBdéy discrete Ada-
Boost.MH and real AdaBoost.MH. The figure shows the traiind test error as a function
of number of rounds. The-axis shows the number of rounds (using a logarithmic scale)
and they-axis the training and test error. Real AdaBoost.MH dracadly outperforms the
other two methods, a behavior that seems to be typical oe k&xg-categorization tasks.
For example, to reach a test error of 40%, discrete AdaBlgbstakes 16,938 rounds, and
discrete AdaBoost.MR takes 33,347 rounds. In comparigath AdaBoost.MH takes only
268 rounds, more than a sixty-fold speed-up over the besteobther two methods!

As happened in this example, discrete AdaBoost.MH seemartsistently outperform
discrete AdaBoost.MR on similar problems. However, thigmibe partially due to the
inferior choice ofa; using the approximation leading to Eq. (28) rather than tkece
method which gives the choice of in Eq. (22).

11. Concluding Remarks

In this paper, we have described several improvements tmiérand Schapire’s AdaBoost
algorithm. In the new framework, weak hypotheses may asgigfidences to each of their
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predictions. We described several generalizations fortiolats problems. The experi-
mental results with the improved boosting algorithms shoat tramatic improvements in
training error are possible when a fairly large amount ofadatavailable. However, on
small and noisy datasets, the rapid decrease of trainimg erioften accompanied with
overfitting which sometimes results in rather poor geneagion error. A very important
research goal is thus to control, either directly or inditgdhe complexity of the strong
hypotheses constructed by boosting.

Several applications can make use of the improved booslingithms. We have imple-
mented a system called BoosTexter for multiclass multeladxt and speech categoriza-
tion and performed an extensive set of experiments withayxssem (Schapire & Singer,
to appear). We have also used the new boosting frameworlefdgsidg efficient ranking
algorithms (Freund et al., 1998).

There are other domains that may make use of the new framewoboosting. For
instance, it might be possible to train non-linear classfisuch as neural networks using
Z as the objective function. We have also mentioned seveeal ppblems such as finding
an oblivious hypothesis intp—1, +1} which minimizesZ in AdaBoost.MR.

Finally, there seem to be interesting connections betweesting and other models and
their learning algorithms such as generalized additive elo(Friedman et al., 1998) and
maximum entropy methods (Csiszar & Tusnady, 1984) whaimfa new and exciting
research arena.
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Appendix A
Properties of Z

In this appendix, we show that the function defined by Eq.$3) convex function in the

parameters, ..., ay and describe a numerical procedure based on Newton’s méthod
find the parameters which minimize it.
To simplify notation, lets;; = —y,;g,(x;). We will analyze the following slightly more

general form of Eq. (3)
m N
Zw,; exp Zaju,;j , (w; >0, Zw,; =1). (A1)
i=1 j=1 i

Note that in all cases discussed in this pageis of the form given by Eq. (A.1). We

therefore refer for brevity to the function given by Eq. (Ads Z. The first and second
order derivatives of/ with respectta,...,ay are

BZ m N
VkZ = E = Z w; eXp Z a_iui_i Uik (AZ)
' i=1 ji=1

) 82Z m N
VMZ == M = Z w; eXp Z ;Ui Uip U4l - (A3)
) i=1 j=1

Denoting bya! = (w1, ..., u;n) we can rewritev>Z as
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m N
iz = E w; exp E ajug; uu’
i=1 j=1

Now, for any vectox € R" we have that,

m N
x'Vv2Zx = x" E w; exp E a;ju;; ulTui X
— —
_ T
= g w; exp E a;jUij xT u;u; X
m N
2
= E w; exp E ajuy; | (x-uw;)” > 0.
i=1 j=1

Hence V2 Z is positive semidefinite which implies thAtis convex with respectta, . . ., an
and has a unique minimum (with the exception of pathologiaaks).
To find the values ofiq, ..., ay that minimizeZ we can use iterative methods such as

Newton’s method. In short, for Newton’s method the new separameters is updated
from the current set as follows

a+—a-— (V22) vzl (A.4)
wherea = (ay,...,an).
Let

N

1
V; = —W; exp E @;l;;
7 ' 77
Jj=1

and denote by

Eivp 1] Z v;u; and Ez~v u Z v; u u; .

i=1

Then, substituting the values f8Z andV?2Z from Egs. (A.2) and (A.3) in Eq. (A.4), we
get that the Newton parameter update is

a<+a-— (Ei~v [uTuJ)il Eivp [ug].

Typically, the above update would result in a new set of patens that attains a smaller
value ofZ than the current set. However, such a decrease islnatysguaranteed. Hence,
the above iteration should be augmented with a test on the\wl”Z and a line search in
the direction of(VQZ)71 vZT in case of an increase in the value ©f (For further
details, see for instance Fletcher (1987)).
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Appendix B

Bounding the Generalization Error

In this appendix, we prove a bound on the generalizationr efrthe combined hypothesis
produced by AdaBoost in terms of the margins of the trainixaneples. An outline of the
proof that we present here was communicated to us by PetdeBalit uses techniques
developed by Bartlett (1998) and Schapire et al. (1998).

Let H be a set of real-valued functions on domain We letco(?) denote theconvex
hull of H, namely,

co(H) = {f:mHZahh(wHah ZO,Zah—l}
h h

where it is understood that each of the sums above are ovéiniteesubset of hypotheses

in H for whichaj, > 0. We assume here that the weights on the hypotheses are nonneg
ative. The result can be generalized to handle negativehisegimply by adding t6< all
hypotheses-h for h € H.

The main result of this appendix is the theorem below. Theotbm is identical to
Schapire et al.’s (1998) Theorem 2 except that we allow thakws/potheses to be real-
valued rather than binary.

We usePr(, ,).p [A] to denote the probability of the eveAtwhen the exampléz, y)
is chosen according t®, andPr(, ,).s [4] to denote probability with respect to choos-
ing an example uniformly at random from the training set. Wlk=ar from context, we
abbreviate these byrp [A] andPrg [A]. We useEp [A] andEg [A] to denote expected
value in a similar manner.

To prove the theorem, we will first need to define the notion sfappy cover. For a
classF of real-valued functions, a training s6tof sizem, and real numberé > 0 and
e > 0, we say that a function class is ane-sloppyé-cover of 7 with respect taS if, for

all f in F, there existsf in F with Pr, . [\f(m) — f(z)| > 9} < e LetN(F,0,e,m)

denote the maximum, over all training sétef sizem, of the size of the smallestsloppy
#-cover of F with respect taS.

THEOREMS8 Let D be a distribution ovett’ x {—1,+1}, and letS be a sample ofn
examples chosen independently at random accordirig. tSuppose the weak-hypothesis
spacel of [-1, +1]-valued functions has pseudodimensipand letd > 0. Assume that
m > d > 1. Then with probability at least — ¢ over the random choice of the training set
S, every weighted average functigne co(#) satisfies the following generalization-error
bound for all§ > 0:

9 1/2
Pro () < 0] < Prs [yf(@) < 6] + O ( (22 s iogta/a)) ) .

3~
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Proof: Using techniques from Bartlett (1998), Schapire et al. 8,9Eheorem 4) give a
theorem which states that, fer> 0 andf > 0, the probability over the random choice of
training setS that there exists any functighe co(#) for which

Prp [yf(z) <0] > Prg[yf(z) < 6] +e¢
is at most

2N (co(H),8/2, /8, 2m)e < /32, (B.1)
We prove Theorem 8 by applying this result. To do so, we ne@dmstruct sloppy covers

for co(H).
Haussler and Long (1995, Lemma 13) prove that

wownam <52 (7) 3] < (G

Fix any setS C X of sizem. Then this result means that there exigtsC H of
cardinality(em/(6d))? such that for all € H there exists: € H such that

Vo € S : |h(z) — h(z)| < 8. (B.2)

Now let
1 < .
CN—{f:mn—)N;hi(mHhie’H}

be the set of unweighted averages\dflements ir#{. We will show thatCy is a sloppy
cover ofco(H).
Let f € co(H). Then we can write

fla) =" ajh;(x)
i
wherea; > 0and}; a; = 1. Let
fla) =2 ajhy(x)
i
whereh; € # is chosen so that; andh; satisfy Eq. (B.2). Then for alk € S,

|f(z) = f(=)] =

> aj(hj(@) — hj()

J

IN

Z ; ‘h.i(m) —h; (fﬂ)‘
0 (B.3)

IN
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Next, let us define a distributio@ over functions inCx in which a functiong € Cy is
selected by choosindii, ..., hx independently at random according to the distribution
over# defined by the; coefficients, and then setting= (1/N) 3. | h;. Note that, for
fixed z, f(m) = E,~¢ [g(z)]. We therefore can use Chernoff bounds to show that

Pry~o [\f(fv) —g(x)| > 9] < 2¢NO/2,
Thus,
By [Pr(m,y)w‘ [|f($) - g(z)| > GH
= By)~s [Prg~g [\f(m) — g(z)| > 9” < 2 N2
Therefore, there existg € € such that
Prig y)~s [\f(fﬂ) —g(z)| > 9] < 90~ NO?/2

Combined with Eq. (B.3), this means théy, is a2e NV’ /2-sloppy26-cover ofco(H).
Since|Cn| < |H|Y, we have thus shown that

em\ AN

)

SettingV = (32/6?) In(16/¢), this implies that Eq. (B.1) is at most

N(co(H),26,2e N12 m) < (

(32d/6%) In(16/¢)
8em 2
—e“m/32
2 ( 94 ) e . (B.4)
Let
- 16 In(2/4) n 2d 1 8em 1 (em) 1/2 (B.5)
‘= 8m me? "\ "d "\ ’ ’

Then the logarithm of Eq. (B.4) is
16d 8em In(2/4) 2d 8em em
1n2—9—21n<9d>1n< Y —|—m921n<d>ln(7)>
16d 8em em

16d S8em em S8em mo?

< Iné.

IN

For the first inequality, we used the fact tha{8em /d) > In(em/d) > 1. For the second
inequality, note that

| Sem1 m_02
"o ) "\ 24
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is increasing as a function éf Therefore, sincé < 1, it is upper bounded by

8em m 8em em
m(?fynbﬁ<“«i7>m03)
Thus, for the choice of given in Eqg. (B.5), the bound in Eq. (B.4) is at mést
We have thus proved the bound of the theorem for a single gilieice off > 0 with
high probability. We next prove that with high probabilithe bound holds simultane-

ously for alld > 0. Lete(f,d) be the choice o€ given in Eq. (B.5), regarding the other
parameters as fixed. We have shown that, fof all 0, the probability that

Pro [yf(z) < 0] > Prs [yf(z) < 6] + (6, 6) (8.6)

is at mosty. Let® = {1,1/2,1/4,...}. By the union bound, this implies that, with
probability at least — ¢,

Prp [yf(x) < 0] < Prs[yf(z) < 6] + (6, 56/2) (B.7)

forall 8 € ©. This is because, for fixefl € ©, Eq. (B.7) holds with probability — §6/2.
Therefore, the probability that it fails to hold fanyf € © is at mosty _, o d6/2 = 6.

Assume we are in the high probability case that Eq. (B.7) ©iédd all 6 € ©. Then
given anyd > 0, choosd)’ € © such that/2 < 6’ < §. We have

Prp [yf(x) <0] < Prs[yf(z) < 8] + (8,06 /2)
< Profyf(a) < 6] + €(6/2,60/4).

Since
9 1/2
€(0/2,60/4) = O (L (d“)gaigm/d) + 1og(1/6)> ) :

this completes the proof. m
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